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a b s t r a c t 

Strongly nonlinear phenomena are attributes of suspension system dynamics of vehicles 

operated at high dynamic loads and high speeds. The causes of these phenomena are back- 

lasches and dry friction in the mechanisms, detachments of the wheel from the roadway, 

impacts on the bumper elements, etc. It is well known that modelling of strong nonlinear 

phenomena can be based on a piecewise linear approach. To simplify the mathematical 

description of such phenomena, Żardecki developed special luz(…) and tar(…) projections. 

These piecewise-linear projections have a surprisingly simple mathematical apparatus that 

enables analytical operations (eg. reductions) for differential and algebraic equations and 

inclusions with non-smooth nonlinearities, and simplifies numerical simulations. The ap- 

plication of this method to model and simulation studies of the dynamics of the car steer- 

ing system (including freeplay and stick-slip processes) have been reported in several au- 

thorial articles. This article presents examples related to suspension system dynamics. 

© 2021 Published by Elsevier Inc. 

 

 

1. Introduction 

1.1. Vehicle suspension system models 

Non-smooth nonlinearities apply to mathematical models of strongly nonlinear processes caused by abruptly changing 

structures and characteristics of the objects. In mechanical systems this is primarily due to the occurrence of backlash, 

dry friction with stiction, and collisions [1] . Numerous examples show that such processes can be characterized by strange 

behaviors (e.g. bifurcations, chaos) [2] . A rapid change in the mechanical structure and characteristics of the object may be

the reason for non-linear vibrations, motion instability, etc., which is also observed in road vehicles [3] . 

In the case of modeling the "vertical dynamics" of the car, the non-smooth nonlinearities result generally from dry fric- 

tion and clearance in the suspension mechanisms, functioning active elements according to the sky-hook principle, de- 

tachment of the wheel from the roadway, impact on the bumper element, etc. Strongly nonlinear processes can manifest 

themselves both in the case of small interactions (e.g. in stick-slip processes) and large ones (e.g. in the operation of the

stopper). Such processes can be watched especially in suspension systems of the vehicles operated on uneven roads, espe- 
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cially at high speeds. In these cases the vehicle suspension elements work in extreme dynamic loads with detachments of 

the wheel from the roadway and with impacts on the bumper. 

Meanwhile, the analysis of numerous publications on the vertical dynamics of vehicles, in particular "state-of-the-art" 

papers, eg. [4 , 5] , indicate that non-smooth nonlinearities in mathematical models of suspension system dynamics are con- 

sidered quite rarely. Such models appear rather only in detail studies of suspension mechanisms treated as 3D or 2D Multi

Body Systems (MBS) due to their kinematic properties. Publication analyzes show that the so-called “quarter car” suspension 

model (1D model describing vibrations in an independent single-wheel suspension system modeled as a dual-mass system) 

provides the basis for researchers and engineers in describing the vehicle vertical dynamics (see review article [6] ). This

model in the simplest linear version is very useful not only for the presentation of the most important suspension dynamic

properties, but also for the analysis or design of controllers for semi-active and active suspension systems, for analysis or 

design of test stands and test methods, etc. A linear “quarter car” suspension system model is used in simulation studies, 

as well as in analytical investigations (using Laplace / Fourier transfer functions) in time and frequency domain. Of course, 

it is worth undertaking research on “quarter car” suspension models, taking into account non-smooth nonlinearities. Exam- 

ples of such approach are quite sporadic, eg. [7] . This article is focused on research methods regarding strongly non-linear

dynamics of suspension systems, but especially with using piecewise-linear models, and special mathematical apparatus. 

1.2. Piecewise-linear approach 

Modelling and simulation of processes with non-smooth nonlinearities are generally quite difficult problems. In many 

cases, they must be modelled by differential inclusions or equations with variable structure and algebraic constraints. These 

models are very complicated (implicit functions, iterations), and therefore simulation calculations expand significantly over 

time, even if special methods, such as the method of Linear Complementary Problems (LCP) are used [8 , 9] . On-line simula-

tion remains a huge challenge, as it requires fairly simple dynamic models. Piecewise-linear models seem to be an attractive 

proposition for many mathematical descriptions of strongly nonlinear processes. This approach takes into account the most 

important non-linear process features, expressed by models having switchable structures with linear segments inside. 

General theory of piecewise linear systems refers to modeling, static and dynamic analysis, numerical procedures, and so 

on. This mathematical theory is worked up together with the non-linear theories of different dynamic objects and processes, 

and in the beginning - especially with the theory of electrical circuits, eg. [10 , 11] ). So called Chua’s circuits [12] (special

resistor-inductor-capacitor-diode systems) became basic electronic analog devices for studies bifurcation and chaos phe- 

nomena in piecewise-linear systems. The Chua’s circuits have their mechanical equivalents [13 , 14] . The theory of piecewise

linear systems is developed also by the way of scientific works concerning multibody systems with freeplay (backlash with 

elastic compliance) and/or friction (viscous plus dry friction with stiction) in joints. Of course, piecewise linearity of mod- 

els occurs frequently as a result of characteristics approximation, but also because of strong non-linear constrains [15 , 16] .

Examples of such mechanical system models have been discussed in numerous papers (see eg. state-of-art papers [17 , 18] ).

An importance of piecewise linear systems’ theory improves because of intensive investigations of real-time control and 

optimization algorithms which require simplified models of systems [19–23] . 

There are two main approaches for piecewise linearity description [23] . The first approach is, when a model is described

piece-by-piece by linear equations. The ranges of given linear variability are conditioned by constrains relations, so they 

are described with logical operators. In simple cases, the piecewise linearity of the model appears in its broken-line type 

characteristics. The second approach is, where a model is given in a compact analytic form (so called canonical form) for

the full range of variations with formulas basing on linear and strong non-linear projections (type of “module” and “sign”). 

Here, piecewise-linear relationships are replaced by analytic formulas without logic operators. 

The first approach is more general, but it leads to long-drawn-out model’s description. Even if there are special meth- 

ods simplifying basic mathematical operations accomplished on multi-point piecewise-linear characteristics [24] , most often 

such models are extreme difficult to transformation and reduction. Using the second manner of modeling those inconve- 

niences can be avoided. Analytic description of a piecewise linear formula gives a chance for its simplification especially 

when a peculiar mathematic apparatus has been prepared before. Canonical forms of the piecewise linear model can be 

also very helpful for synthesis smart simulation procedures [25] . Of course, in many cases, calculation of compact analytic 

form of the model can be difficult and even impossible. In such situations we should look for mixed forms of the piecewise

linear model. 

Analytic description of the piecewise linear mapping uses functions and pseudo-functions which act so called basic pro- 

jections. They can be created by elementary (simplest) projections, eg. 

y = x, y = sgn ( x ) = 

{ −1 i f x < 0 

0 i f x = 0 

1 i f x > 0 

, y = σ ( x ) = 

{
0 i f x � = 0 

1 i f x = 0 

, 

or by their compounds and combinations, eg. 

y = | x | = x · sgn ( x ) = 

{
−x i f x ≤ 0 

x i f x ≥ 0 

, y = sgh ( x ) = sgn ( x ) + s ∗ · σ ( x ) = 

{ −1 i f x < 0 

s ∗ ∈ [ −1 , 1 ] i f x = 0 

1 i f x > 0 
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Fig 1. Typical piecewise linear characteristics for freeplay and friction expression. 

 

 

 

 

 

Next, more complicate piecewise linear projections can be created on the base of above presented projections us- 

ing simple mathematical operations as change of variable’s signs, invertibility, arguments’ shift, linear combinations and 

compounds. These new projections can be treated also as the basic ones for specific applications. Eg. the simplest piecewise 

linear characteristics of the diode (especially important for electronic system models) can be described as following: 

y = d iod ( x ) = 

x + | x | 
2 

= x ·
(

1 + sgn ( x ) 

2 

)
= 

{
0 f or x < 0 

x f or x ≥ 0 

In case of modeling discrete mechanical systems with freeplay and friction creation of the base piecewise linear projec- 

tions is surprisingly simple. Though, the gist of freeplay in elementary compliance system can be expressed by the piecewise 

linear stiffness characteristics with “dead zone”, as the friction action in elementary dissipative system – by the piecewise 

linear Coulomb’s characteristics of kinetic friction supplemented by a piecewise linear description (saturation dependence) 

of static friction action and stiction effects ( Fig. 1 ). The basic characteristics which occur in the freeplay and friction descrip-

tion are topologically strongly related and have analytical forms (!). This remark was a background for the idea of the luz(..)

and tar(…) projections as the basic ones for freeplay and friction problems. 

The luz(..) and tar(…) projections have been proposed and developed by Żardecki within a simple but very efficient 

mathematical apparatus (details in [26 , 27 , 28 , 29] ). They greatly facilitate analytical transformations, especially parametrically-

made formal reduction of the piecewise-linear models [30] . This is very important, because as is known from mathematical

theory of dynamic systems’ sensitivity, ensuring a proper continuity of a reduced model requires some regularity of trans- 

formations that can be obtained when they are implemented in a parametric way (Hadamard postulate). 

The luz(…) and tar(…) projections and their mathematical apparatus have been used with success in many applications, 

especially concerning the friction theory (stick slip processes, static friction indeterminacy problems) [31 , 32] and vehicle 

steering systems dynamics (where problems of a gear freeplay and kin-pin dry friction are evident) [33 , 34 , 35 , 36] . 

This paper is extended version of the paper presented on 15th DSTA Conference [37] . It contains (p.2) short information

on the luz(…) and tar(…) projections and their mathematical apparatus, and then (p.3, p.4, p.5) describes the method of 

application these projections to study suspension system models and vehicle vertical dynamics. 

2. Piecewise linear luz(…) and tar(…) projections 

The piecewise linear luz(…) and tar(…) projections are defined as following: 

luz ( x, a ) = x + 

| x − a | − | x + a | 
2 

, (1) 

tar ( x, a ) = x + a · s ∗ (2) 

where s ∗ ∈ [ − 1, 1], a ≥ 0 

Note, that these projections are like inverse functions (see Fig. 2 ), which means that: 

luz ( x, a ) = ta r −1 ( x, a ) , (3) 
Fig. 2. Topological interpretation of luz(…) and tar(…) projections. 
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tar ( x, a ) = lu z −1 ( x, a ) (4) 

The luz(...) and tar(...) projections have surprisingly simple properties. Their formulas compose some mathematical appa- 

ratus. Here only example formulas are shown. Constants a, k,... appearing in the formulas are non-negative. 

l uz ( −x, a ) = −l uz ( x, a ) , (5) 

t ar ( −x, a ) = −t ar ( x, a ) (6) 

l uz ( l uz ( x, a ) , b ) = l uz ( x, a + b ) , (7) 

t ar ( t ar ( x, a ) , b ) = t ar ( x, a + b ) (8) 

k · l uz ( x, a ) = l uz ( k · x, k · a ) , (9) 

k · t ar ( x, a ) = t ar ( k · x, k · a ) (10) 

k 1 · tar ( x, a 1 ) + k 2 · tar ( x, a 2 ) = ( k 1 + k 2 ) ·
(

x, 
k 1 · a 1 + k 2 · a 2 

k 1 + k 2 

)
(11) 

If luz ( y, b ) = k ·luz ( x − y, a ) then 

l uz ( y, b ) = 

k 

k + 1 

· l uz ( x, a + b ) (12) 

Note: For a linear system ( a = b = 0) it means the well known dependence y = 

k 
k +1 

· x 

If

ε · ˙ x ( t ) ∈ y ( t ) − b · tar ( x ( t ) , a ) and ε → 0 then x ( t ) = luz 

(
y ( t ) 

b 
, a 

)
(13) 

Extensive lists of mathematical theorems (also with proofs) are described in the Żardecki’s papers. 

The luz(…) and tar(…) projections can be used as basic projections for description different piecewise linear character- 

istics ( Fig. 3 ). Such descriptions depends on researcher’s inventions a lot. More complicate dependences can be expressed 

also by projections’ series. 

These examples concern characteristics with symmetry in relation to the point (0,0). When the symmetry deals with the 

shifted point the well-known rules of description of function with deflexed arguments should be applied. When characteris- 

tics has not any symmetries it can be treated as a part of full symmetrical characteristics having large deflection parameter

( Fig. 4 ). 
Fig. 3. Examples of piecewise linear characteristics basing on luz(…) or/and tar(…). 
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Fig. 4. Example of piecewise linear asymmetric characteristics. Here a >> 0. 

 

 

3. Modeling of MBS-type suspension subsystem 

The luz(…) and tar(…) mathematical apparatus is very useful in formal synthesis MBS-type non-smooth systems. Rep- 

resentative example expressing the method of modeling corresponds with models of suspension system having clearances 

and limiters of the movements. 

This system ( Fig. 5 ) is a combination of four solid elements through elastic elements. There is a clearance between

elements 2 and 3. Solid elements 2 and 3 have very low masses. The stiffness between elements 2 and 3 is very high. We

will assume that dynamic excitations are small enough to justify not including plastic collisions in the physical model. 

Notation and assumptions: 

z 1 , z 2 , z 3 , z 4 – placements of solid elements, 

F 1 , F 2 , F 3 , F 4 – external forces; we will assume that F 2 = 0, F 3 = 0, 

t – time, 

M 1 , M 2 , M 3 , M 4 – masses, M 1 , M 4 � M 2 , M 3 ; we will assume that M 2 = 0, M 3 = 0, 

K 12 , K 23 , K 34 – stiffness coefficients, K 23 � K 12 , K 34 ; we will assume that K 23 → ∞ , 

( z 3 − z 4 ) 0 – clearance parameter. 

Using Lagrange second type equations of motion one obtains initial form of the model: 

M 1 · z̈ 1 ( t ) + K 12 · ( z 1 ( t ) − z 2 ( t ) ) = F 1 ( t ) , (14) 

M 2 · z̈ 2 ( t ) − K 12 · ( z 1 ( t ) − z 2 ( t ) ) + K 23 · luz ( ( z 2 ( t ) − z 3 ( t ) ) , ( z 2 − z 3 ) 0 ) = 0 , (15) 

M 3 · z̈ 3 ( t ) − K 23 · luz ( ( z 2 ( t ) − z 3 ( t ) ) , ( z 2 − z 3 ) 0 ) + K 34 · ( z 3 ( t ) − z 4 ( t ) ) = 0 , (16) 

M 4 · z̈ 4 ( t ) − K 34 · ( z 3 ( t ) − z 4 ( t ) ) = F 4 ( t ) . (17) 
Fig. 5. Substitute mechanical scheme of MBS-type suspension subsystem. 
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When M 2 = 0, M 3 = 0 the model is reduced to the differential - algebraic form. Algebraic non-linear constraints equations

are: 

−K 12 · ( z 1 ( t ) − z 2 ( t ) ) + K 23 · luz ( ( z 2 ( t ) − z 3 ( t ) ) , ( z 2 − z 3 ) 0 ) = 0 , (18) 

−K 23 · luz ( ( z 2 ( t ) − z 3 ( t ) ) , ( z 2 − z 3 ) 0 ) + K 34 · ( z 3 ( t ) − z 4 ( t ) ) = 0 . (19) 

Release from these equations and elimination of z 2 , z 3 will be here made using basic formulas of luz(...) and tar(...)

mathematical apparatus. These mathematical operations are following: 

- Firstly, in order to reduce, we determine z 3 ( t ) from the first equation of constraints (18): 

z 3 ( t ) = z 2 ( t ) − tar 

((
K 12 

K 23 
( z 1 ( t ) − z 2 ( t ) ) 

)
, ( z 2 − z 3 ) 0 

)
(20) 

- Then, after setting to the second Eq. (19) , we have 

K 34 ·
(

z 2 ( t ) − tar 

((
K 12 

K 23 
( z 1 ( t ) − z 2 ( t ) ) 

)
, ( z 2 − z 3 ) 0 

)
− z 4 ( t ) 

)
= K 12 · ( z 1 ( t ) − z 2 ( t ) ) (21) 

Hence we obtain successively: 

z 2 ( t ) − z 4 ( t ) = 

K 12 

K 34 
( z 1 ( t ) − z 2 ( t ) ) + tar 

((
K 12 

K 23 
( z 1 ( t ) − z 2 ( t ) ) 

)
, ( z 1 − z 2 ) 0 

)
(22) 

z 2 ( t ) − z 4 ( t ) = 

K 12 

K 34 
( z 1 ( t ) − z 2 ( t ) ) + 

K 12 

K 23 

tar 

( 

( z 1 ( t ) − z 2 ( t ) ) , 

( 

( z 2 − z 3 ) 0 
K 12 

K 23 

) ) 

(23) 

z 2 ( t ) − z 4 ( t ) = 

K 12 

K 34 

t ar ( ( z 1 ( t ) − z 2 ( t ) ) , 0 ) + 

K 12 

K 23 

t ar 

( 

( z 1 ( t ) − z 2 ( t ) ) , 

( 

( z 2 − z 3 ) 0 
K 12 

K 23 

) ) 

(24) 

- Using the formula (11) we have: 

z 2 ( t ) − z 4 ( t ) = 

(
K 12 

K 34 

+ 

K 12 

K 23 

)
tar 

( 

( z 1 ( t ) − z 2 ( t ) ) , 

( 

( z 2 − z 3 ) 0 
K 12 

K 34 
+ 

K 12 

K 23 

) ) 

(25) 

And then 

z 1 ( t ) − z 2 ( t ) = 

1 

K 12 

K 34 
+ 

K 12 

K 23 

luz ( ( z 2 ( t ) − z 4 ( t ) ) , ( z 2 − z 3 ) 0 ) (26) 

z 1 ( t ) − z 2 ( t ) = 

1 

K 12 

K 34 
+ 

K 12 

K 23 

luz ( ( ( z 1 ( t ) − z 4 ( t ) ) − ( z 1 ( t ) − z 2 ( t ) ) ) , ( z 2 − z 3 ) 0 ) (27) 

i.e. 

l uz ( ( z 1 ( t ) − z 2 ( t ) ) , 0 ) = 

1 

K 12 

K 34 
+ 

K 12 

K 23 

l uz ( ( ( z 1 ( t ) − z 4 ( t ) ) − ( z 1 ( t ) − z 2 ( t ) ) ) , ( z 2 − z 3 ) 0 ) (28) 

Using formulas (12) we obtain a disentanglement form 

z 1 ( t ) − z 2 ( t ) = 

1 
K 12 
K 34 

+ K 12 
K 23 

1 
K 12 
K 34 

+ K 12 
K 23 

+ 1 

luz ( ( z 1 ( t ) − z 4 ( t ) ) , ( z 2 − z 3 ) 0 ) (29) 

By combination of the constraints Eqs. (18) , (19) we receive 

z 1 ( t ) − z 2 ( t ) = 

K 34 

K 12 

· ( z 3 ( t ) − z 4 ( t ) ) (30) 

Then

z 3 ( t ) − z 4 ( t ) = 

K 12 

K 34 

1 
K 12 
K 34 

+ K 12 
K 23 

1 
K 12 
K 34 

+ K 12 
K 23 

+ 1 

luz ( ( z 1 ( t ) − z 4 ( t ) ) , ( z 2 − z 3 ) 0 ) (31) 

Finally, assuming a substitute stiffness parameter 

K 14 = 

1 

1 
K 

+ 

1 
K 

+ 

1 
K 

(32) 
12 23 34 
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we obtain the model without constraints equations, and without variables z 2 ( t ) and z 3 ( t ): 

M 1 · z̈ 1 ( t ) + K 14 · luz ( ( z 1 ( t ) − z 4 ( t ) ) , ( z 2 − z 3 ) 0 ) = F 1 ( t ) (33) 

M 4 · z̈ 4 ( t ) − K 14 · luz ( ( z 1 ( t ) − z 4 ( t ) ) , ( z 2 − z 3 ) 0 ) = F 4 ( t ) (34) 

This model describes the dynamics of the system in the presence of clearance and infinitely high stiffness (i.e. limiter) 

in meshing. 

4. Modeling and simulation of quarter-car suspension system dynamics 

4.1. Piecewise-linear model of quarter car suspension system dynamics 

A simplified model presented in this paper concerns an independent suspension system of a passenger car driving with 

constant speed on a straight uneven road. The substitute mechanical scheme of the system ( Fig. 6 ) includes the most impor-

tant suspension and tire attributes related to the description of vertical movement dynamics, i.e. piecewise linear suspension 

elasticity (including limiter action), viscous friction (damping) and dry friction in the shock absorber, as well as piecewise 

linear elasticity in the tire – road interactions, taking into account wheel detachment from the road surface. More detailed 

description of tire motion is not analyzed. As the presented non-linear model was supposed to be a development of the

standard linear single-wheel suspension models, a very simplified point description of the cooperation between the wheel 

and the road (but with the wheel detachment effect) was used in it. A detailed description of the wheel-road interaction

(going beyond framework of this article), also based on the projections luz(...) and tar(...) is prepared. It takes into account

the 3-dimensional description, the stick-slip phenomenon, and the phenomenon of relaxation. This model is unfortunately 

very extensive. A publication on the description of the wheel-road interaction is planned after stand and simulation experi- 

ments. 

Characteristics F S 21 ( z 2 − z 1 ), F S 10 ( z 1 − z 0 ) express spring properties of the suspension system and tire, while F D 21 ( ̇ z 2 − ˙ z 1 )

– friction (dry plus viscous) properties. Piecewise linear description of these force characteristics presented in Fig. 1 can be 

described using luz(…) and tar(…) projections, as follows: 

F S21 ( z 2 − z 1 ) = K 21 ( z 2 − z 1 ) + ( K 21 L − K 21 ) luz ( ( z 2 − z 1 ) , �z 21 L ) (35) 

F S10 ( z 1 − z 0 ) = K 10 luz ( z 1 − z 0 − a, a ) a � 0 (36) 

Note: Wheel detachment from the road surface means that in such state the force should be equal zero. This is described

by specific characteristics type of k ·luz ( x − a, a ), where shift parameter a has a “big” value due to x. 

F D 21 ( ̇ z 1 − ˙ z 2 ) = C 21 tar 

(
( ̇ z 1 − ˙ z 2 ) , 

F D 210 

C 21 

)
(37) 

Notation: 

t - time 

(0XZ) - global coordinate system 
Fig. 6. Substitute mechanical scheme of suspension system with piecewise liner spring and dissipative force characteristics. 
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z 0 (t) - road profile as a function of time 

z 1 (t) - vertical displacement of the wheel centre 

z 2 (t) - vertical displacement of the sprung mass 

�z 21L - maximum deformation of the suspension system without limiter’s action 

K 10 - stiffness coefficient of the tire 

K 21 - stiffness coefficient of the suspension 

K 21L - stiffness coefficient of the suspension with limiter’s action 

C 21 - damping coefficient of the shock absorber 

F D210 - maximum dry friction (we assume the same values for static and kinetic dry friction) 

M 1 - unsprung mass (of the wheel) 

M 2 - sprung mass (of the quarter carbody). 

g - gravitation acceleration. 

Initial mathematical model describing motions in local coordinates is done by two differential inclusions (inclusions 

because of the dry friction action): 

M 1 ̈z 1 ( t ) + C 21 tar 

(
( ̇ z 1 ( t ) − ˙ z 2 ( t ) ) , 

F D 210 

C 21 

)
+ K 21 ( z 1 ( t ) − z 2 ( t ) ) + ( K 21 L − K 21 ) luz ( z 1 ( t ) − z 2 ( t ) , �z 21 L ) 

+ K 10 luz ( z 1 ( t ) − z 0 ( t ) − a, a ) + M 1 g ∈ 0 (38) 

M 2 ̈z 2 ( t ) + C 21 tar 

(
( ̇ z 2 ( t ) − ˙ z 1 ( t ) ) , 

F D 210 

C 21 

)
+ K 21 ( z 2 ( t ) − z 1 ( t ) ) + ( K 21 L − K 21 ) luz ( z 2 ( t ) − z 1 ( t ) , �z 21 L ) + M 2 g ∈ 0 

(39) 

Using methodology presented in [11] , these differential inclusions create the model in differential equation form (here 

with variable structure). 

M 1 ̈z 1 ( t ) = 

⎧ ⎨ 

⎩ 

−F D 210 sgn ( ̇ z 1 ( t ) − ˙ z 2 ( t ) ) + F 1 ( t ) i f ˙ z 1 ( t ) � = 

˙ z 2 ( t ) 

M 1 ( F 1 ( t ) + F 2 ( t ) ) 

M 1 + M 2 

+ luz 

(
M 2 F 1 ( t ) − M 1 F 2 ( t ) 

M 1 + M 2 

, F D 210 

)
i f ˙ z 1 ( t ) = 

˙ z 2 ( t ) 
(40) 

M 2 ̈z 2 ( t ) = 

⎧ ⎨ 

⎩ 

F D 210 sgn ( ̇ z 1 ( t ) − ˙ z 2 ( t ) ) + F 2 ( t ) i f ˙ z 1 ( t ) � = 

˙ z 2 ( t ) 

M 2 ( F 1 ( t ) + F 2 ( t ) ) 

M 1 + M 2 

− luz 

(
M 2 F 1 ( t ) − M 1 F 2 ( t ) 

M 1 + M 2 

, F D 210 

)
i f ˙ z 1 ( t ) = 

˙ z 2 ( t ) 
(41) 

where: 

F 1 ( t ) = −C 21 ( ̇ z 1 ( t ) − ˙ z 2 ( t ) ) − K 21 ( z 1 ( t ) − z 2 ( t ) ) − ( K 21 L − K 21 ) luz ( ( z 1 ( t ) − z 2 ( t ) ) , �z 21 L ) (42) 

− K 10 luz ( z 1 ( t ) − z 0 ( t ) − a, a ) − M 1 g (42) 

F 2 ( t ) = −F 1 ( t ) + K 10 luz ( z 1 ( t ) − z 0 ( t ) − a, a ) + M 1 g − M 2 g (43) 

Because of gravitation forces, the time series of variables z 1 (t) and z 2 (t) occur around steady states z 10 and z 20 that result

from the action of gravity. These steady states create initial conditions for processes resulting from road unevennesses. Note, 

that z 10 and z 20 can be treated as the steady state results of action of gravitation forces modelled as the functions M 1 ·g ·1(t)

and M 2 ·g ·1(t) (1(t) – Heaviside function) applied to the system model with zeros initial conditions. 

The time course of the road profile is an excitation in the model. With the given profile z 0 (x), an appropriate transfor-

mation of the variables should be performed. When the vehicle is traveling at a constant speed V, then z 0 (x(t)) = z 0 (V(t)),

which means that the parameter V is a time scaling factor. For a random, poliharmonic or sinusoidal course of variable

z 0 (V(t)), one obtains slow changing waveforms – for small speeds, and fast changing waveforms – for high speeds. 

In a similar way, we can treat input signal caused by a single hummock ( Fig. 7 ). 
Fig. 7. Puls - type input signal z 0 (t). 
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This input signal can be described as the half period of the sinusoidal signal: 

z 0 ( t ) = Z 00 sin 

(
π

T 0 
t 

)
( 1 ( t ) − 1 ( t − T 0 ) ) (44) 

where 

T 0 = 

X 0 

V 

(45) 

X 0 – hump length 

Z 00 – hump height 

V – car sped 

Note, that for typical sinusoidal signal (tare type road unevenesses simulated experimentally by test rig): 

z 0 ( t ) = Z 00 sin ( 2 π f 0 t ) 1 ( t ) (46) 

where f 0 – frequency of input signal. Note that f 0 can be interpreted as 

f 0 = 1 / ( 2 T 0 ) = V/ ( 2 X 0 ) . (47) 

For detection peculiar states of the model special temporary indexes are defined: 

q 10 ( t ) = 1 + sgn ( luz ( z 1 ( t ) − z 0 ( t ) − a, a ) ) = 

{
1 i f z 1 ( t ) − z 0 ( t ) ≥ 0 W heel datachment 
0 i f z 1 ( t ) − z 0 ( t ) < 0 Lack of wheel datachment 

(48) 

q 21 ( t ) = sgn ( luz ( z 1 ( t ) − z 2 ( t ) , �z 12 ) ) = 

{ −1 i f z 2 ( t ) − z 1 ( t ) < −�z 21 Low limiter action 

0 i f −�z 21 ≤ z 2 ( t ) − z 1 ( t ) ≤ �z 21 No limiter actrion 

1 i f z 2 ( t ) − z 1 ( t ) > �z 21 U pper limiter action 

(49) 

4.2. Simulation of quarter-car suspension system motions 

The simulation program has been worked up on the basis of the model presented in p.4.1. The program Fig. 8 was

developed in the LabVIEW software system with Control Design and Simulation module, and with using numerical and 

graphic procedures described in authors’ articles [35 , 36] . The problem of selecting the method and the integration step have

been analyzed in great detail and was preceded by a series of numerical tests. In this case, the Runge-Kutta 4 method with

step 0.001 s was used. 

According to this program, simulation processes contain two phases of calculations: the first – calculation of initial con- 

ditions of variables z 10 and z 20 , the second – calculation of the responses z 1 (t), z 2 (t) at a given excitation z 0 (t). The start

time of z 0 (t) is determined experimentally with some large reserve (note that the length of the temporary forms of output

signals depends on the parameters of the suspension). The idea of these calculations is shown in Fig. 9 . 
Fig. 8. Screen view with simulation program code. 
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Fig. 9. Example two phase simulation process (here sinusoidal excitation begins when t = 20 s). 

Table 1 

List of parameters of the simulation model. Their values are in SI system. 

Parameter Value Description 

M 1 30 Unsprung mass (of the wheel) 

M 2 300 Sprung mass (of the quarter car body) 

C 21 2000 Damping coefficient of the shock absorber 

F D210 0.2 Maximum dry friction (the same values for static and kinetic dry friction) 

K 21 40000 Stiffness coefficient of the suspension 

K 21L 300000 Stiffness coefficient of the suspension with limiter’s action 

K 10 200000 Stiffness coefficient of the tire 

�z 21L 0.14 Maximum deformation of the suspension system without limiter’s action 

g 9.81 Gravitation acceleration 

When pulse-type input signal 

Z 00 0.15 Hump height 

X 0 0.5 Hump length 

V 0.5; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0; 4.5; 5.0; 

5.5; 6.0; 6.5; 7.0; 7.5; 8.0; 8.5; 9.0; 9.5; 10.0 

Car speed 

When sinusoidal input signal 

Z 00 0.15 Amplitude 

f 0 0.5; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0; 4.5; 5.0; 

5.5; 6.0; 6.5; 7.0; 7.5; 8.0; 8.5; 9.0; 9.5; 10.0 

Frequency 

 

 

 

 

 

 

 

 

 

 

Simulation investigations presented in this article concern of two types of input signals z 0 (t): pulse type signal (44), and

sinusoidal signal (46). Simulation results contain not only time curses z 1 (t), z 2 (t) but also indexes q 10 (t), q 21 (t). For periodic

excitations, simulation results are presented also with using phase plots ż 10 (z 10 ) and ż 21 (z 21 ). These phase plots contain

special marker lines corresponding with non-zero values of indicator signals. 

The following examples of research calculations were made on the data presented in Table 1 . They concern a hypothetical

passenger car, but their values do not differ much from the data of the real vehicle. To determinate of data, the earlier

studies on single-wheel linear models quoted in the review paper [6] were used. Of course, the model validation may be of

a qualitative nature in this case. For quantitative validation, numerical data and experimental results for a specific vehicle 

should be used. Such works are planned. 

The results of simulations are presented in Figs. 10–13 . 

4.3. Discussion of simulation results 

The calculation results presented in Figs. 10 –13 , although they relate to a selected fragment of simulation research, au-

thorize to draw a number of interesting observations and conclusions. 

At the outset, we analyze the results of the simulation with pulse excitation ( Figs. 10 , 11 ). For the smallest of the assumed

speeds V = 0.5 m/s the suspension system behaved like a linear system (zeroing of both indicators q 10 (t), q 21 (t)). At the

next value of speed, i.e. at V = 1.0 m/s, wheel detachment is observed, as well as a short-term impact on the lower stop

occurring after the cessation of the wheel detachment. The waveforms at the next V values show significant irregularities, 
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Fig. 10. Example simulation results for pulse type excitation. 
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Fig. 11. Example simulation results for pulse type excitation. 
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Fig. 12. Example simulation results for sinusoidal excitation. 
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Fig. 13. Example simulation results for sinusoidal excitation. 
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e.g. at V = 2.0 m/s you can see the wheel detachment, but without hit the bumper, while at V = 3.0 m/s you can see the

wheel detachment and double impact on the bottom stop. At speeds in the range of [5.0,10.0] m/s, the simulated waveforms

behave in a regular manner - when the wheel detaches, a lower limiter impact occurs. Of course, as the speed increases, the

duration of the wheel detachment slightly increases, but such an increase is more visible in the low speed range. This fact

can be easily explained. We note that an important measure of the "violence" of the input signal z 0 (t) with the unchanged

Z 00 amplitude is the value of its duration T 0 . Because the relationship T 0 (V) is a hyperbolic function (45), whose values

decrease as V increases (for small V values relatively quickly, then slowly), so for some larger V their effect on T 0 is relatively

small. This can be seen when comparing the results from Figs. 10 and 11 . Significant differences can be seen only for V in

the "small values" range (for vehicle speeds from several to a dozen or so km/h), in this case for V ∈ [0.5, 5.0] m/s. Thus, the

irregularity of the course of solutions has a local feature when the vehicle speed is changed. 

Simulations carried out in the case of impulse interaction for subsequent velocity values V have their direct references 

to the simulations for the case of sinusoidal interaction implemented for the subsequent values of the frequency f 0 of the

input signal. This is demonstrated by the relationship (47). Therefore, it seems reasonable to attempt to correlate the analysis 

of results for both types of excitations (only attempt, because as we know in the case of non-linear systems, such simple

transferring of conclusions may turn out to be an error). 

Now we discuss simulations for sinusoidal excitations. Of course such analysis concerns of a section of output signals 

after the time of cessation of transient signals resulting from the fact of inclusion of sinusoidal input signal. In these cases

also the phase plots are interesting and useful. For small values of frequency f 0 = 0.5 Hz the output signals can be treated

as signals from a linear system. (no detachments, no stop actions). Hear phase plots are typical ellipses. Non-linear effect 

appears for f 0 = 1.0 Hz. It is visible also in phase plots. For next rather small frequencies from the range [1.5, 5.0] Hz

irregular (chaos - like) effects can be observed. For next higher frequencies output signals z 1 (t) and z 2 (t) have regular forms

typical for periodic poliharmonic signals. Note that in these case phase plots have forms of distorted ellipses. 

So, we can observe that in this piecewise-linear system there is enough powerful correlation between results obtained 

for impulse-type and sinusoidal excitation. 

5. Conclusions 

The presented method of modeling strong non-linerities in vehicle suspension system and non-linear vertical dynamics 

of a vehicle, the method based on piecewise linear luz(…) and tar(…) projections is very effective. It can be quite easily

applied to more sophisticated models of suspension systems, also to 3D models. In this case, it is necessary to enter vector

dependencies, which will result in a more complex non-linear description. This also applies to the spatial description of the 

tire - road interaction. 

The method based on piecewise linear luz(…) and tar(…) projections is also very useful in simulation investigations. The 

examples of such research presented in this article show us some huge fields of very attractive studies for specialists in

vehicle system dynamics, non-linear mechanics, and mathematics. Sensitivity studies (with variation of mass, stiffness and 

friction parameters) should provide answers to many next interesting questions. 
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